References
S. E. Ingebritsen, S. Geiger, S. Hurwitz, and T. Driesner. Numerical simulation of magmatic hydrothermal systems. Reviews of Geophysics, 2010. doi:10.1029/2009RG000287.
Jörg Hasenclever, Sonja Theissen-Krah, Lars H Rüpke, Jason P Morgan, Karthik Iyer, Sven Petersen, and Colin W Devey. Hybrid shallow on-axis and deep off-axis hydrothermal circulation at fast-spreading ridges. Nature, 508(7497):508–512, 2014. doi:10.1038/nature13174.
Kentaro Nakamura and Ken Takai. Theoretical constraints of physical and chemical properties of hydrothermal fluids on variations in chemolithotrophic microbial communities in seafloor hydrothermal systems. Progress in Earth and Planetary Science, 1(1):5, 2014. URL: https://doi.org/10.1186/2197-4284-1-5, doi:10.1186/2197-4284-1-5.
Tim Jupp and Adam Schultz. A thermodynamic explanation for black smoker temperatures. Nature, 403(6772):880–883, 2000.
T. E. Jupp and A. Schultz. Physical balances in subseafloor hydrothermal convection cells. Journal of Geophysical Research-Solid Earth, 2004. URL: <Go to ISI>://WOS:000221911900002, doi:10.1029/2003jb002697.
T. Driesner. The interplay of permeability and fluid properties as a first order control of heat transport, venting temperatures and venting salinities at mid-ocean ridge hydrothermal systems. Geofluids, 10(1-2):132–141, 2010. URL: <Go to ISI>://WOS:000277410200010, doi:10.1111/j.1468-8123.2009.00273.x.
D. Coumou, T. Driesner, and C. A. Heinrich. The structure and dynamics of mid-ocean ridge hydrothermal systems. Science, 321(5897):1825–1828, 2008. URL: <Go to ISI>://000259501300035 http://www.sciencemag.org/cgi/reprint/321/5897/1825.pdf, doi:10.1126/science.1159582.
C. Andersen, LH Rüpke, J. Hasenclever, I. Grevemeyer, and S. Petersen. Fault geometry and permeability contrast control vent temperatures at the logatchev 1 hydrothermal field, mid-atlantic ridge. Geology, 43(1):51–54, 2015. doi:doi:10.1130/G36113.1.
T Driesner. The interplay of permeability and fluid properties as a first order control of heat transport, venting temperatures and venting salinities at mid-ocean ridge hydrothermal systems. Geofluids, 10(1-2):132–141, 2010. URL: http://doi.wiley.com/10.1111/j.1468-8123.2009.00273.x, doi:10.1111/j.1468-8123.2009.00273.x.
C. R. German, K. A. Casciotti, J. C. Dutay, L. E. Heimburger, W. J. Jenkins, C. I. Measures, R. A. Mills, H. Obata, R. Schlitzer, A. Tagliabue, D. R. Turner, and H. Whitby. Hydrothermal impacts on trace element and isotope ocean biogeochemistry. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 2016. URL: <Go to ISI>://WOS:000391139900015, doi:ARTN 20160035 10.1098/rsta.2016.0035.
B. J. deMartin, R. A. R. Canales, J. P. Canales, and S. E. Humphris. Kinematics and geometry of active detachment faulting beneath the trans-atlantic geotraverse (tag) hydrothermal field on the mid-atlantic ridge. Geology, 35(8):711–714, 2007. URL: <Go to ISI>://000248430500010.
Fadl Moukalled, L Mangani, Marwan Darwish, and others. The finite volume method in computational fluid dynamics. Volume 6. Springer, 2016.
Z. Guo, L. Rüpke, and C. Tao. Hydrothermalfoam v1.0: a 3-d hydro-thermo-transport model fornatural submarine hydrothermal systems. Geoscientific Model Development, 2020.
C. Andersen, S. Theissen-Krah, M. D. Hannington, L. Rüpke, and S. Petersen. Faulting and off-axis submarine massive sulfide accumulation at slow-spreading mid-ocean ridges: a numerical modeling perspective. Geochemistry Geophysics Geosystems, 2017.
A. M. McCaig, R. A. Cliff, J. Escartin, A. E. Fallick, and C. J. MacLeod. Oceanic detachment faults focus very large volumes of black smoker fluids. Geology, 35(10):935–938, 2007. URL: <Go to ISI>://WOS:000250102800018, doi:10.1130/G23657a.1.
Andrew M. McCaig, AdéLie Delacour, Anthony E. Fallick, Teddy Castelain, and Gretchen L. FrüH-Green. Detachment fault control on hydrothermal circulation systems: interpreting the subsurface beneath the tag hydrothermal field using the isotopic and geological evolution of oceanic core complexes in the atlantic. Diversity Of Hydrothermal Systems On Slow Spreading Ocean Ridges, 2010. URL: https://doi.org/10.1029/2008GM000729, doi:doi:10.1029/2008GM000729 10.1029/2008GM000729.
J. Escartin, D. K. Smith, J. Cann, H. Schouten, C. H. Langmuir, and S. Escrig. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature, 455(7214):790–U5, 2008. doi:10.1038/nature07333.
Edward T. Baker. Hydrothermal cooling of midocean ridge axes: do measured and modeled heat fluxes agree? Earth and Planetary Science Letters, 263(1-2):140–150, 2007. doi:10.1016/j.epsl.2007.09.010.
Leonid N. Germanovich, Robert S. Hurt, Joshua E. Smith, Gence Genc, and Robert P. Lowell. Measuring fluid flow and heat output in seafloor hydrothermal environments. Journal of Geophysical Research: Solid Earth, 120(12):8031–8055, 2015. doi:10.1002/2015jb012245.
H. Svensen, S. Planke, A. Malthe-Sorenssen, B. Jamtveit, R. Myklebust, T. R. Eidem, and S. S. Rey. Release of methane from a volcanic basin as a mechanism for initial eocene global warming. Nature, 429(6991):542–545, 2004. URL: <Go to ISI>://WOS:000221767700034, doi:10.1038/nature02566.
I. Aarnes, H. Svensen, J.A.D Connolly, and Y.Y. Podladchikov. How contact metamorphism can trigger global climate changes: modeling gas generation around igneous sills in sedimentary basins. Geochimica Et Cosmochimica Acta, 2010. doi:10.1016/j.gca.2010.09.011.
Karthik Iyer, Daniel W. Schmid, Sverre Planke, and John Millett. Modelling hydrothermal venting in volcanic sedimentary basins: impact on hydrocarbon maturation and paleoclimate. Earth and Planetary Science Letters, 467:30–42, 2017. URL: http://www.sciencedirect.com/science/article/pii/S0012821X17301590, doi:https://doi.org/10.1016/j.epsl.2017.03.023.
David C. Lund and Paul D. Asimow. Does sea level influence mid-ocean ridge magmatism on milankovitch timescales? Geochemistry Geophysics Geosystems, 2011. doi:10.1029/2011gc003693.
John W. Crowley, Richard F. Katz, Peter Huybers, Charles H. Langmuir, and Sung-Hyun Park. Glacial cycles drive variations in the production of oceanic crust. Science, 2015. doi:10.1126/science.1261508.
DC. Lund, P. D. Asimow, K. A. Farley, T. O. Rooney, E. Seeley, E. W. Jackson, and Z. M. Durham. Enhanced east pacific rise hydrothermal activity during the last two glacial terminations. Science, 351(6272):478–482, 2016. doi:10.1126/science.aad4296.
C. Y. Galerne and J. Hasenclever. Distinct degassing pulses during magma invasion in the stratified karoo basin—new insights from hydrothermal fluid flow modeling. Geochemistry, Geophysics, Geosystems, 20(6):2955–2984, 2019. doi:10.1029/2018gc008120.
P. Weis, T. Driesner, and C. A. Heinrich. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes. Science, 338(6114):1613–1616, 2012.
S. F. Cox. The application of failure mode diagrams for exploring the roles of fluid pressure and stress states in controlling styles of fracture-controlled permeability enhancement in faults and shear zones. Geofluids, 2010. doi:10.1111/j.1468-8123.2010.00281.x.
A. Y. Rozhko, Y. Y. Podladchikov, and F. Renard. Failure patterns caused by localized rise in pore-fluid overpressure and effective strength of rocks. Geophysical Research Letters, 2007. doi:10.1029/2007gl031696.